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Abstract 
 
The micronizing grinding of natural zeolite, of the clinoptilolite type, was investigated in a ring mill. The aim of the experiment 

was to determine the optimal grinding conditions to obtain a powder with appropriate physico-chemical and microstructural 
characteristics that would find its potential application as a binder and ion exchanger in structural composites. The analysis of 
specific size classes of zeolite e after micronization was performed by grinding kinetics. 

The research was carried out on previously prepared zeolite samples, on wider and narrower size classes (-3.35 + 0 mm; 
-3.35 + 2.36 mm; -2.36 + 1.18 mm; -1.18 + 0 mm) and different starting masses (50 g, 100 g, 200 g). Fine grinding was carried out 
at different time intervals (20 s, 45 s, 75 s, 120 s, 300 s, 900 s). A sieve analysis was performed on the grinding products, the 
content of the size class (-5 + 0) μm and the specific surface area of these products were determined. XRD analysis was 
performed on individual grinding products to take into account possible changes in the zeolite material itself. Based on the results 
obtained, an artificial neural network was developed and then compared with the experimental results. The artificial neural network 
models have achieved a satisfactory prediction accuracy (0.989 - 0.997) and can be considered accurate and very useful for the 
prediction of variable responses. 
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1. Introduction 
 
Clinoptilolite is one of the most common natural 

zeolites, easily obtained from mines [1], and belongs to 
a wide group of natural and synthetic materials that are 
characterized by differences in terms of their chemical, 
physical and structural properties [2, 3]. Natural zeolites 
are microporous crystals of aluminosilicate composition, 
a network structure composed of well-defined cavities, 
interconnected by channels in which cations and water 
molecules are located. They represent micropores of 
crystal hydrated aluminum silicates, and their primary or 
basic building block is the TO4 tetrahedron (T = Si, Al) in 
the center of which Si and / or Al atoms are located, 
while oxygen atoms are located on the forks. These 
units are connected in space via common oxygen 
atoms, building secondary polyhedral units whose 
connection creates a crystal (aluminosilicate) lattice. 

Since the aluminosilicate lattice is formed by 
connecting Si(IV)-O and Al(III)-O building units, it is 
negatively charged, and electroneutrality is provided by 
cations of alkali and / or alkaline earth metals located 

inside the channels and cavities of the lattice. These 
hydrated cations are mainly, Na+, K+, Mg2+ and Ca2+ 
and less frequently Ba2+ and Sr2+. Due to weak 
electrostatic interactions with the aluminosilicate lattice, 
these cations are mobile, and in contact with the 
solution they are easily exchanged by ions from the 
solution, which gives zeolites the property of ion 
exchangers. Zeolites are actually forms of "molecular 
sieves" connected by micropores and cavities, and due 
to such structure and manifested ion-exchange 
properties, zeolites are very often used as sorbers in 
composite construction materials [4 - 6]. Structural voids 
in the range of molecular dimensions (3-10 A °) can 
provide space for cation reception (Na+, K+, Mg+, Ba+, 
Ca+), and various metal cations, transition metal ions 
(Co, Fe, Mn, Zn), as well as molecules and ions from 

the group (H2O, NH3, CO3
2-

, NO3
-) [23]. Water molecules 

that can be reversibly desorbed are also located in 
channels and cavities, which gives zeolites the 
properties of drying agents [7, 8]. The process of 
micronizing grinding is intended to grind the mineral 
raw material to particles of micron size and thus 
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prepare it for direct application or for further 
technological processing. The process of micronizing 
grinding is mainly applied for grinding mineral raw 
materials that have already been crushed, by crushing 
and standard grinding. The application of a prolonged 
micronization procedure in a certain time interval under 
certain conditions increases the specific surface area of 
the treated powder, improves the reactivity and 
pozzolanic activity of the zeolite material, increases the 
cation exchange capacity and agglomerates the 
samples [9, 10]. 

Amorphization, particle size reduction, and 
agglomeration cause a decrease in crystallinity [11 - 13]. 
Micronizing grinding is performed under the action of 
external forces, and primarily, as with standard grinding, 
it is achieved by splicing surfaces, cracks and other 
defective places in mineral grains [14]. The main 
problem related to micronizing grinding at the industrial 
level is in the sustainability of this procedure in 
economic terms, so an ideal balance must be found 
between the achieved properties of the treated material 
on the one hand and the time and energy consumption 
for the process on the other. 

Recently, artificial neural networks are increasingly 
used in modeling and optimizing the grinding process. 
Flament et al. (1993) [15, 24] in their paper considered 
the identification of the dynamics and reverse dynamics 
of a simulated grinding cycle, using neural networks. An 
experimental program was set up to test the 
management of a simulated industrial grinding cycle 
using a number of control strategies based on non-
feedback networks [15, 24]. Ma et al. (2009) [16] 
developed a series of artificial neural networks (ANN) for 
the analysis and prediction of correlations between 
process parameters and morphological characteristics 
of nanocomposite WC-18% MgO powders using the 
backward error propagation algorithm (BP). The 
prediction results of the BP algorithm showed good 
coherence with the experimental data, and the 
optimized grinding parameters were obtained using an 
artificial neural network and experimental data. They 
came to the conclusion that the BP algorithm can be 
applied to grinding processes in high-energy mills [16]. 
Ahmadzadeh and Lundberg (2013) [17] tested different 
methods of predicting the wear of the lining from the 
mill, in the context of the remaining height and the 
remaining service life of the lining. They applied multiple 
linear regression and artificial neural networks to 
determine the most favorable methodology for predicting 
lining wear [17]. In their second paper, Ahmadzadeh 

and Lundberg (2013) [18] attempted to develop a 
method that predicts the remaining service life of a 
coating, without the need to stop the mill. Artificial neural 
networks are designed based on various process 
parameters that affect the wear of the lining. The results 
showed an accuracy of 90%, the artificial neuron model 
was able to predict the remaining service life of the liner 
while the mill was operating; it is not necessary to stop 
the mill for any maintenance activity, which prevents 
large financial losses [18]. Singh et al. (2013) [19] 
developed a wrestling neural network model to predict 
the distribution of the granulometric composition of 
grinding products using available grinding data for 
different chromite ore grindability. They made a 
mathematical model that was tested on middle classes 
of chromite ore. The results showed a comparative 
accuracy of predictions for all three models, and the 
value of r2 varies between (0.76 - 0.93) [19]. Terzić et al. 
(2017) [8] examined the mechano-chemical activation of 
bentonite clay in an ultra-centrifugal mill, to obtain a 
material that is used as a binder and sorbent in building 
composites due to its physical-mechanical and 
microstructural characteristics. The activation efficiency 
of bentonite clay was determined by a chemometric and 
mathematical model of an artificial neural network. The 
obtained results using an artificial neural network for 
observing the process parameters and the quality of 
bentonite clay were compared with the experimental 
results. The value of the coefficient r2 between the 
experimental data and the data of the artificial neural 
network model for the content of the size class (- 5 + 0) 
µm is 0.811 [8]. Terzić et al. (2017) [12] in their second 
work examined the mechano-chemical activation of 
natural clinoptilolite-type zeolite from seven deposits in 
an ultra-centrifugal mill, for the production of powder 
with appropriate physicochemical and microstructural 
characteristics that can be used as a binder and ion 
exchanger in structural composites. An artificial neural 
network was developed on a mathematical model of the 
observed responses and then compared with 
experimental results. The artificial neural network model 
had 227 exit point models. Experimental results as well 
as the results of mathematical models showed that 
zeolite micronized for 30 minutes is optimal for obtaining 
a powder that can be used as a binder and ion 
exchanger. At this time of micronizing grinding, 38.8% of 
the content of the size class (- 5 + 0) µm was obtained. 
The value of the coefficient r2 between the experimental 
data and the data of the artificial neural network model 
for the content of the size class (- 5 + 0) µm is 0.936 
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[12]. Farizhandi et al. (2020) [20] used a planetary mill to 
develop a rapid assessment procedure to identify the 
characteristics of powders and granular materials. The 
grinding results in the planetary mill are then introduced 
into the artificial neural network model to describe the 
change in the distribution of the granulometric 
composition caused by the attrition of the particles 
during fluidization [20]. The modeling of an artificial 
neural network in this paper aims to optimize the 
process of micronizing grinding (in order to obtain the 
shortest time of micronizing grinding, the lowest energy 
consumption), to obtain materials with the best 
properties. 

This paper aims to test the dry micronization of 
zeolite, using modern methods to determine the 
physico-chemical and mineralogical characteristics of 
micronized zeolite products, and the changes in the 
parameters that determine the operation of the vibrating 
mill with rings (grinding time, number of revolutions), as 
well as the analysis of the quality of the micronizing 
powder described by numerous parameters (specific 
surface area, granulometric composition for different 
size classes, mill filling, etc.) to obtain the finest 
micronized product with improved reactivity. Based on 
the obtained micronization results, it will be possible to 
predict the results using artificial neural networks to 
determine the best grinding conditions and the optimal 
product. 

 
2. Experimental part 
2.1. Materials 
 
The paper plans to examine the dry micronization of 

zeolite, using modern methods for determining the 
physicochemical and mineralogical characteristics of 
micronized zeolite products, and changes in parameters 
that determine the operation of the vibrating mill with 
rings (grinding time, number of revolutions), as well as 
quality analysis of micronizing powder. Numerous 
parameters (specific surface, granulometric composition 
for different size classes, mill filling, etc.), in order to 
obtain the finest micronized product of improved 
reactivity. Based on the obtained results of micronizing 
grinding, the results will be predicted using artificial 
neural networks, in order to determine the best grinding 
conditions and the optimal product. 

The zeolite sample is gray, while the crystals are 
lithocrystalloclastic to crystalloclastic. It contains about 
90% zeolite, in a smaller amount quartz, feldspar, mica 
and calcite and traces of ilite. Prior to the micronization 

grinding process, sample preparation was carried out. 
The zeolite sample was first crushed in a laboratory jaw 
crusher to an upper limit size of 3.35 mm. This was 
followed by homogenization, splitting of the sample and 
representative sampling. Four size fractions (- 3.35 + 0 
mm; - 3.35 + 2.36 mm; - 2.36 + 1.18 mm; - 1.18 + 0 mm) 
in different starting masses (50 g, 100 g, 200 g) were 
also prepared and subjected to micronizing grinding. 
Chemical analysis of the zeolite sample was determined 
by a standard analytical method. The results of the 
chemical analysis are given in Table 1 [14]. 

 
Table 1 Chemical composition of the initial zeolite 
sample [14] 
Component SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O LoI* 
Content, % 64.05 15.29 2.52 4.82 1.33 0.77 1.27 9.86 

* LoI - Loss on ignition determined as weight difference 
between 20 ° and 1000 °C 

 
2.2. Micronizing grinding 
 
Micronizing grinding of zeolite was performed in a 

laboratory vibrating mill with rings of the type 
"SIEBTECHNIK TS-250", at a speed of 1000 rpm in a 
time interval of 20 s, 45 s, 75 s, 120 s, 300 s, and 900 
seconds. The content of the size class (- 5 + 0) µm, 
which was determined using ultrasonic sieve (US1-
RETSCH), and the theoretical specific surface area 
were monitored. 

 
2.3. Mineralogical characteristics of zeolites 
 
X - ray diffraction analysis was performed on 

characteristic samples of grinding products. X ray 
diffraction analysis was used to determine and monitor 
the phase composition of the samples. The samples 
were analyzed on an X-ray diffractometer of the 
“PHILIPS” brand, model PW-1710 with a curved 
graphite monochromator and a scintillation counter. The 

intensities of diffracted CuK ray radiation 

(=1.54178Å) were measured at room temperature in 

the intervals of 0.02 2 and time from 1 and in the 

range from 4 to 65 2. The X-ray tube was loaded with 
a voltage of 40 kV and a current of 30 mA, while the 

slots for directing the primary and diffracted beam 1 
and 0.1 mm [14]. 

 
2.4. Modeling of artificial neural networks 
 
In  this  research,  models  based  on the Multi Layer  



 

 

 

 

 

 

 
26                                                                          V. Nikolić et al. / JMM 60 A (1) (2024) 23-32 
 

Perceptron were used, which in principle consist of three 
layers (input layer, hidden layer and output layer). The 
first estimation of the neuron number was obtained from 
a number of input and output neurons, the number of 
neurons in the hidden layer and number of weights 
(connections between layers) in the neural network. 
Number of neurons in a hidden layer depends on the 
complexity of the relationship between inputs and 
outputs. In this study, the number of hidden neurons in 
the ANN model varied from n=4 to 10. There were x=3 
inputs, y=15 outputs, and m=81–210 wt coefficients 
(depending on n). Binary step was used in the activation 
function. The learning rate was 0.1. 

The optimum number of hidden neurons was 
chosen upon minimizing the difference between 
predicted ANN values and desired outputs, using r2 
during testing as a performance indicator. The 
coefficient  of  determination (r2) is compared below with  

the values obtained by other researchers. 
It is also the most commonly used and most flexible 

model of an artificial neural network of general purpose. 
The input values of this model were size class, grinding 
time and initial mass of the sample, while the output 
values were the content of the size class (- 5 + 0) µm 
and the specific area. An artificial neural network with 
feed forward error backpropagation was used in the 
paper. The network "learns" using the Levenberg-
Marquardt algorithm due to its high accuracy [12, 25]. 

 
3. Results and discussion 
 
The increase in the time of micronizing grinding led 

to a change in the characteristics of zeolite and the 
manifestation of differences between unground and 
ground zeolite. The results of micronizing grinding are 
shown in Tables 2-5. 

 
Table 2 Content of the size class (- 5 + 0) µm of the sample (- 3.35 + 0) mm, after micronizing grinding, starting 
masses (50, 100 and 200) g [14, 26] 

50 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 95.90 97.40 95.86 94.08 81.04 80.18 
Spec. surface area (m2/kg) 1056.02 1070.77 1056.65 1036.41 895.96 888.22 

100 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 90.98 94.15 95.83 94.31 82.11 64.99 
Spec. surface area (m2/kg) 1006.26 1039.44 1055.46 1038.20 908.23 723.16 

200 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 83.22 92.49 93.48 93.39 90.76 71.49 
Spec. surface area (m2/kg) 922.29 1020.16 1031.95 1031.64 1001.81 797.52 

 
Table 3 Content of size class (- 5 + 0) µm of sample (- 3.35 + 2.36) mm, after micronizing grinding, starting masses 
(50, 100 and 200) g [14, 26] 

50 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 93.03 95.71 94.63 91.64 81.03 76.78 
Spec. surface area (m2/kg) 1027.67 1053.86 1042.69 1012.06 897.11 852.43 

100 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 89.92 94.83 95.34 94.78 86.63 74.49 
Spec. surface area (m2/kg) 996.46 1046.60 1050.40 1045.26 957.48 826.11 

200 g 
Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 77.75 90.72 93.01 95.33 92.97 76.82 
Spec. surface area (m2/kg) 864.01 1002.84 1027.77 1050.04 1024.66 849.60 
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Table 4 Content of size class (- 5 + 0) µm of sample (- 2.36 + 1.18) mm, after micronizing grinding, initial masses 
(50, 100 and 200) g [14, 26] 

50 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 94.12 96.53 96.37 93.04 85.80 79.29 
Spec. surface area (m2/kg) 1039.29 1062.18 1060.31 1026.50 946.92 878.86 

100 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 93.44 93.62 93.94 93.83 84.54 70.48 
Spec. surface area (m2/kg) 1029.96 1035.05 1037.55 1036.92 935.84 784.92 

200 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 81.80 92.42 95.61 95.69 93.65 75.18 
Spec. surface area (m2/kg) 906.09 1019.29 1054.08 1054.56 1032.70 833.96 

 
Table 5 Content of size class (- 5 + 0) µm of sample (- 1.18 + 0) mm, after micronizing grinding, starting masses (50, 
100 and 200) g [14, 26] 

50 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 96.28 96.15 92.75 91.72 86.98 82.84 
Spec. surface area (m2/kg) 1059.86 1058.75 1026.59 1015.20 961.18 919.22 

100 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 92.87 94.50 95.20 94.16 88.86 66.78 
Spec. surface area (m2/kg) 1025.54 1042.88 1049.27 1038.06 980.73 745.39 

200 g 

Time 20 s 45 s 75 s 120 s 300 s 900 s 
Size class (µm) - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 - 5 + 0 
W (%) 82.41 92.72 94.37 93.87 90.60 76.17 
Spec. surface area (m2/kg) 912.77 1023.59 1040.74 1036.79 1001.55 844.26 

 
As the time of micronized grinding increases, 

the content of the class (- 5 + 0) µm [12] and 
the specific surface area [12] increase until a certain 
grinding time, and after that it is assumed that 
agglomeration of samples occurs. For all samples, the 
optimal grinding time is between (45 and 75) 
seconds, during which time the sample is ground 
and the specific surface area is increased. At longer 
grinding times the specific surface area is reduced 
as the agglomeration process is assumed to take 
place. The content of the size class (- 5 + 0) µm 
increases to 95%, and then it reduces at as grinding 
time increases. In order to determine whether 
agglomeration occurred, X-ray diffraction analysis 
was performed on a sample of class (- 3.35 + 0) mm 
with a starting mass of 50 g. 

3.1. X-ray diffraction analysis 
 
Figure 1 shows a comparative representation of the 

diffractogram of the unground sample and the sample 
with a starting weight of 50 g micronized (45, 120 and 
900) seconds [14]. 

All samples were examined by X - ray diffraction on 
a polycrystalline sample. The mineral composition of the 
unground sample (Figure 1 a)) is as follows: HEU type 
minerals, quartz, feldspar, mica, and the most common 
is zeolite minerals, while quartz, feldspars and mica are 
significantly less represented. Of the feldspar, 
plagioclase is more predominantly represented than K-
feldspar, and of the carbonate mineral, the presence of 
trace calcite was found. In the micronized sample for 45 
seconds (Figure 1 b)), the content of zeolite minerals did 
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not decrease compared to the unground sample, and 
the effects of amorphization due to grinding were not 
seen [12]. In the sample shown in Figure 1 c), the 
content of zeolite minerals begins to decrease, and the 
effects of amorphization due to grinding are weak, while 
in the sample in Figure 1 d) the effects of amorphization 
due to grinding are very pronounced, and zeolite 

minerals in the crystalline they are practically in shape 
[12], i.e. most of them are amorphized [8]. The authors 
[11, 12, 21, 22] also confirmed that agglomerations of 
zeolites occur after micronizing grinding. In order to see 
whether the obtained results can be tested and whether 
the results can be predicted, a neural network modeling 
was performed in the Matlab program. 

 

 

 
Figure 1 XRD analysis of unground sample (a) and sample with starting weight of (50 g) micronized: b) 45 sec; 

c) 120 sec; d) 900 sec [14] 
 

3.2. Zeolite micronizing grinding modeling 
 
The inputs of the models were size classes (-3.35 + 

0 mm; -3.35 + 2.36 mm; -2.36 + 1.18 mm; -1.18 + 0 
mm), grinding time (20 s, 45 s, 75 s, 120 s, 300 s, 900 s) 
and the initial mass of the sample (50 g, 100 g, 200 g), 
while the output values were content of the size class 
(- 5 + 0) µm and specific area. The results from Tables 
2-5 were inserted into the Multi Layer Perceptron model 
and tested. The database used for modeling artificial 
neural networks in Matlab was divided into three sets: a 
network training set (70%), a validation set (15%) and a 
testing set (15%). A cross-validation data set was used 
to test network performance, while a data set used 
during the training was used as an indicator of the level 
of generalization and an indicator of the time when the 
network completed the training [12]. A set of test data 

was used to examine the possibility of network 
generalization. Testing of the model showed that the 
network achieves good results, which is shown in 
Figure 2, having in mind a small set of input-output 
data. The accuracy of the results is confirmed by a 
very large coefficient R that ranges (0.989 - 0.997), 
which gives a satisfactory prediction accuracy. 
Comparing the obtained results with the results of 
other authors [8, 12], who for a much larger number of 
input-output data obtained that the value of the 
coefficient r2 between experimental data and artificial 
neural network model data for size class content 
(- 5 + 0) µm is 0.811 for bentonite [8] and 0.936 
for zeolite [12], it can be concluded that this model 
gave very good results, considering the much 
smaller the number of input-output data in relation 
to the authors [8, 12], and this statement is confirmed 
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by the moving coefficient R (0.989 - 0.997). 
Figures 3 and 4 show a comparison of the calculated 

values compared with the experimental data for the 
optimal artificial neural network. 

 

 
Figure 2 Experimentally obtained values of parameters and values obtained using the ANN model [26] 

 

 
Figure 3 Comparative values of the content of the class (- 5 + 0) µm obtained experimentally and using the ANN 

model [26] 
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Figure 4 Comparative values of specific surface obtained experimentally and using the ANN model [26] 

 
From diagrams 3 and 4 it can be seen that the 

modeling of the network is well done, the neural network 
has well captured the trend of change of curves 
obtained on the basis of experimental results. It was 
calculated that the mean error of the obtained model for 
the content of the size class (- 5 + 0) µm is about 6%, 
and for a specific area about 4.5%, which is considered 
a very good prediction. 

 
4. Conclusion 

 
Micronizing grinding is a complex, long and 

complicated process, but the possibility of using neural 
networks as a tool for predicting results in such research 
facilitates and speeds up the work, and enables more 
accurate results. The study presents a comprehensive 
approach of artificial neural networks that can predict 
the content of the size class (- 5 + 0) µm and the 
specific surface with great certainty. Neural networks 
are applied to this grinding process because neural 
networks rely less on an accurate physical model, and 
are mostly based on a statistic approach. Therefore, 
neural networks can be ideal for modeling this complex 
grinding process, which is the correlation coefficient and 
confirmed by its predictive accuracy that ranges (0.989 - 
0.997). The mean error obtained for both models does 
not exceed 6%, which tells us that the model performed 
a very good prediction of the results. 

Note 
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Izvod 
 
Mikronizirajuće mlevenje prirodnog zeolita, tipa klinoptilolit, ispitivano je u prstenastom mlinu. Cilj eksperimenta je bio da se 

odrede optimalni uslovi mlevenja za dobijanje praha sa odgovarajućim fizičko-hemijskim i mikrostrukturnim karakteristikama koji bi 
našao svoju potencijalnu primenu kao vezivo i jonski izmjenjivač u konstrukcionim kompozitima. Analiza određenih klasa krupnoće 
zeolita nakon mikronizacije izvršena je preko kinetike mlevenja. Istraživanja su vršena na prethodno pripremljenim uzorcima 
zeolita, na širim i užim klasama krupnoće (-3,35 + 0 mm; -3,35 + 2,36 mm; -2,36 + 1,18 mm; -1,18+0 mm) i različitim polaznim 
masama (50 g, 100 g, 200 g). Fino mlevenje je vršeno u različitim vremenskim intervalima (20 s, 45 s, 75 s, 120 s, 300 s, 900 s). 
Na proizvodima mlevenja izvršena je sitovna analiza, određen je sadržaj klase krupnoće (-5+0) μm i specifična površina ovih 
proizvoda. Na pojedinim proizvodima mlevenja izvršena je XRD analiza u cilju sagledavanja potencijalnih promena u samom 
materijalu-zeolitu. Veštačka neuronska mreža je razvijena na osnovu dobijenih rezultata, koja je nakon toga upoređena sa 
dobijenim eksperimentalnim rezultatima. Modeli veštačke neuronske mreže izvršili su zadovoljavajuću tačnost predviđanja 
(0,989 - 0,997) i mogu se smatrati preciznim i vrlo korisnim za predviđanje promenljivih odziva. 

 
Ključne reči: zeolit, mikronizirajuće mlevenje, specifična površina, veštačke neuronske mreže. 

 

 


